Cosa accadrà al Sole quando morirà



(foto: T.A.Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and A.Wolpa (NOAO/AURA/NSF) WIYN. La nebulosa planetaria Abell 39, scoperta da George Abell nel 1966)

Ora gli scienziati sono sicuri sul destino del Sole. Fra cinque miliardi di anni, quando la nostra stella finirà l’energia disponibile per mantenersi in vita, si trasformerà in una nebulosa planetaria, ovvero un anello di grandi dimensioni e massa, pieno di gas e polveri interstellari (ovvero le particelle che sono presenti negli spazi fra le stelle all’interno delle galassie). Per anni, gli scienziati non erano certi di cosa sarebbe successo, dato che la massa del Sole era considerata troppo bassa per dar vita ad un anello così grande e ben visibile. Ma oggi, uno studio della University of Manchester riprende in mano la questione, confermando l’ipotesi della nebulosa planetaria tanto a lungo discussa. I risultati sono pubblicati su Nature Astronomy.

Una volta terminata la loro energia, circa 9 stelle su 10 si trasformano in nebulose planetarie, una fase intermedia nella transizione da gigante rossa – uno degli ultimi stadi della sua evoluzione – a nana bianca, lo stadio finale.

Per studiare il futuro del Sole, gli scienziati hanno sviluppato un nuovo modello basato sui dati che predice l’evoluzione delle stelle: in pratica questo modello fornisce dati sulla luminosità dell’involucro espulso dal corpo celeste, quando muore, ovvero la massa di gas e polvere, per stelle di differente massa ed età. “Questo involucro può avere una massa che è circa la metà di quella della stella originaria”, ha spiegato Albert Zijslra dell’Università di Manchester: proprio a partire da questo momento, il nucleo della stella, che sta terminando l’energia, muore e si spegne definitivamente.

Quando si è in presenza di una stella morente, soltanto corpi celesti sufficientemente grandi con nuclei che bruciano rapidamente – tipicamente in un periodo di circa 10mila anni, che per i corpi celesti è molto breve – forniscono un calore che basta a ionizzare il gas, un fenomeno alla base dell’illuminazione che rende la nebulosa planetaria visibile. I modelli ritenuti validi finora stimavano che per avere questo esito era necessaria una massa circa doppia di quella del Sole, dato che solo grandi masse stellari potevano produrre un calore sufficiente a produrre questa luce. Ma il lavoro di oggi rimette in discussione e confuta questo assunto, inserendo nel modello anche le evidenze più recenti, che mostrano che il nucleo del Sole brucia tre volte più velocemente di quanto si pensava finora, compensando così il dato della massa insufficiente.

Ma lo studio di Manchester risolve anche un’altra questione rimasta in sospeso. Le galassie ellittiche sono fra le più antiche dell’universo e le loro stelle più grandi sono già morte, mentre rimangono soltanto quelle più piccole, che secondo le attuali teorie hanno masse troppo ridotte per dare vita a nebulose planetarie, tuttavia gli scienziati le riescono ad osservare anche in queste galassie. Il nuovo modello fornisce una spiegazione per queste stelle che è simile a quella valida per il Sole: anche se le loro masse sono piccole, i loro nuclei bruciano più rapidamente di quanto si pensasse e questo produce il bagliore che serve ad illuminare gli ammassi di gas e polveri, rendendo possibile l’esistenza di nebulose planetarie.


Fonte: WIRED.it